Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.From Theory to Algorithms Shai Shalev-Shwartz, Shai Ben-David. time is the main bottleneck. We therefore explicitly quantify both the amount of data and the amount of computation time needed to learn a given concept. ... Alon, to whom we are indebted for his help throughout the entire making of the book, has also prepared a solution manual. ... The members of the reading club are Maya Alroy, Yossi Arjevani, Aharon Birnbaum, Alon Cohen, Alon Gonen, Roi Livni, Ofer Meshi, Dananbsp;...

Title | : | Understanding Machine Learning |

Author | : | Shai Shalev-Shwartz, Shai Ben-David |

Publisher | : | Cambridge University Press - 2014-05-19 |

Continue