Bayesian Speech and Language Processing

Bayesian Speech and Language Processing

4.11 - 1251 ratings - Source

With this comprehensive guide you will learn how to apply Bayesian machine learning techniques systematically to solve various problems in speech and language processing. A range of statistical models is detailed, from hidden Markov models to Gaussian mixture models, n-gram models and latent topic models, along with applications including automatic speech recognition, speaker verification, and information retrieval. Approximate Bayesian inferences based on MAP, Evidence, Asymptotic, VB, and MCMC approximations are provided as well as full derivations of calculations, useful notations, formulas, and rules. The authors address the difficulties of straightforward applications and provide detailed examples and case studies to demonstrate how you can successfully use practical Bayesian inference methods to improve the performance of information systems. This is an invaluable resource for students, researchers, and industry practitioners working in machine learning, signal processing, and speech and language processing.2013), pattern recognition (Fukunaga 1990), machine learning (Bishop 2006, Barber 2012), and applications of these approaches. ... The section also provides analytical solutions of posterior distributions of simple models. Based on the basicanbsp;...

Title:Bayesian Speech and Language Processing
Author:Shinji Watanabe, Jen-Tzung Chien
Publisher:Cambridge University Press - 2015-07-31


You Must CONTINUE and create a free account to access unlimited downloads & streaming